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1. Introduction

In [1], Okounkov and Reshetikhin observed that certain charged free fermion vertex opera-

tors can be used to generate plane partitions. In [2], with Vafa, they used this observation

to compute the partition function of a topological string theory. As these vertex operators

arise in KP theory [3], it is natural to look for analogous results in the context of other

integrable hierarchies [4].

Definition 1. An ‘h-path’ in a plane partition, or simply a ‘path’ when indicating the

height h is not needed, is a set of adjacent equal height-h columns, where h > 0.

In this note, we use BKP neutral free fermion vertex operators to obtain the generating

function of volume-weighted plane partitions [5], that satisfy two conditions. 1. Every h-

path, h > 0, can assume one of two possible colours, so it contributes a factor of 2 to the

multiplicity of the plane partition, irrespective of h. 2. There is a unique way to move

along an h-path, from one column to another, or equivalently ‘every h-path is 1-column

wide’.
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Figure 1: A tableau-like representation of a plane partition. There is a 3-path of length 5, a 6-path

of length 2, and 4 different height paths of length 1 each. There is a unique way to move from any

column on a path to another column. Counting a no-move on a length-1 h-path as the one (and

only) possible move, every h-path is 1-column wide, so it qualifies as a BKP partition.

Definition 2. A ‘BKP plane partition’ is a plane partition that satisfies the above two

conditions.

Example 1. In figure 1, we use tableau-like notation to represent a plane partition of the

type counted in this note. The integers are the column heights. The volume of a plane

partition is the sum of all column heights. The volume in this case is 39. There are 6

h-paths. Each path can assume one of two possible colours, so the multiplicity of this plane

partition is 26 = 64.

2. BKP fermions

In this section, we review basic facts related to BKP neutral fermions [4].

2.1 Neutral fermions

Following [4], we consider the neutral fermion field Φ(k) =
∑

m∈Z
φmkm, where the mode

operators, φm, satisfy the anti-commutation relation

[φm, φn]+ = (−)mδm+n,0, m, n ∈ Z (2.1)

2.2 Fock states

We indicate an initial Fock state by 〈. . . , i2, i1|, with . . . < i2 < i1 ≤ 0, and a final state

by |j1, j2, . . .〉, with 0 ≤ j1 < j2 < . . . where, as usual, the integers {im, jn} indicate filled

neutral fermion energy states.

• The action of φm, m > 0, is

〈. . . , i2, i1|φ(m>0) =

{
(−)m+k〈. . . , ik+1,−m, ik, . . . , i1|, ik+1 < −m < ik

0, otherwise

φ(m>0)|j1, j2, . . .〉 =

{
(−)m+k−1|j1, . . . , jk−1, jk+1, . . .〉, m = jk

0, otherwise

– 2 –
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• The action of φm, m < 0, is

〈. . . , i2, i1|φ(m<0) =

{
(−)k−1〈. . . , ik+1, ik−1, . . . , i1|, m = ik

0, otherwise

φ(m<0)|j1, j2, . . .〉 =

{
(−)k|j1, . . . , jk,−m, jk+1, . . .〉, jk < −m < jk+1

0, otherwise

• The action of φ0 is

〈. . . , i2, i1|φ0 =

{
1√
2
〈. . . , i2, i1, 0|, i1 6= 0

1√
2
〈. . . , i2|, i1 = 0

φ0|j1, j2, . . .〉 =

{
1√
2
|0, j1, j2, . . .〉, j1 6= 0

1√
2
|j2, . . .〉, j1 = 0

2.2.1 Remark

Notice that 0 is an allowed filling number, which can be added or removed by the action

of φ0. In the following, this action is used to represent any Fock state in terms of an even

number of mode operators acting on the vacuum.

2.3 Strict partitions

Definition 3. A strict partition, µ̂, is a partition that has only distinct parts. In this note,

we take the number of parts to be always even by allowing for at most one part of length

0, which agrees with Remark 2.2.1.

A neutral fermion initial, or final Fock state can be labeled by a strict partition

〈µ̂| = α(−)r+|bµ|〈0|φ−m2r
. . . φ−m1

= α(−)r+|bµ|〈0|
2r∏

←−
j=1

φ−mj

|µ̂〉 = α(−)rφm1
. . . φm2r

|0〉 = α(−)r
2r∏
−→
j=1

φmj
|0〉 (2.2)

where m1 > . . . > m2r ≥ 0, |µ̂| =
∑2r

j=1 mj, α = 1, for m2r ≥ 1, and α =
√

2, for m2r = 0.

An arrow on a product indicates the direction in which the value of the index of that

product increases.

2.3.1 Remark

In KP theory, positively and negatively charged fermion modes translate to distinct hor-

izontal and distinct vertical parts. These combine, in a standard way, to form partitions

that are not necessarily strict [3]. In BKP theory, there are only neutral modes, which

translate to one set of distinct parts, which form strict partitions. This is why only strict

partitions appear in this work.

– 3 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
5

2.4 A Heisenberg sub-algebra

We refer the reader to [4] for complete definitions of the infinite dimensional Lie algebra

B∞, and its presentation in terms of bilinears in φm. Here, all we need is the Heisenberg

sub-algebra generated by λm ∈ B∞, where

λm =
1

2

∑

j∈Z

(−)j+1φjφ−j−m, m ∈ Zodd (2.3)

which satisfy the commutation relations

[λm, λn] =
m

2
δm+n,0, m, n ∈ Zodd (2.4)

[λm, φn] = φn−m, m ∈ Zodd, n ∈ Z (2.5)

2.5 Evolution operators

Writing Λ±(xodd) =
∑

m∈±Nodd
xmλm, and ζ±(xodd, k) =

∑
m∈±Nodd

xmkm, a standard com-

putation shows that

[Λ±(xodd),Φ(k)] = ζ±(xodd, k)Φ(k) (2.6)

which implies

eΛ±(xodd)Φ(k)e−Λ±(xodd) = Φ(k)eζ±(xodd,k) (2.7)

so that the operators e±Λ±(xodd) act as (forward and backward) evolution operators.

2.6 A choice of parameters

Setting xm = 2
m

z−m, m ∈ Zodd, and writing Λ±(xodd) = Λ±(z), and ζ±(xodd, k) = ζ±(z, k),

we formally have

ζ+(z, k) =
∑

m∈Nodd

2

m


k

z




m

= log


z + k

z − k


 (2.8)

ζ−(z, k) = −
∑

m∈Nodd

2

m


z

k


m

= log


k − z

k + z




2.7 Vertex operators

Consider the vertex operators

Γφ
+(z) = eΛ+(z) = exp




∑

m∈Nodd

2

m
z−mλm


 (2.9)

Γφ
−(z) = e−Λ−(z) = exp




∑

m∈Nodd

2

m
zmλ−m


 (2.10)

Using equations (2.7) and (2.8), expanding and equating powers of k, we obtain

Γφ
+(z)φjΓ

φ
+(−z) = φj + 2

∞∑

n=1

1

zn
φj−n (2.11)

Γφ
−(−z)φjΓ

φ
−(z) = φj + 2

∞∑

n=1

(−z)nφj+n (2.12)

– 4 –
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2.8 A commutation relation

Commuting two vertex operators

Γφ
+(z)Γφ

−(z′) = eΛ+(z)e−Λ−(z′) = e[Λ+(z),−Λ−(z′)] e−Λ−(z′)eΛ+(z)

= e[Λ+(z),−Λ−(z′)] Γφ
−(z′)Γφ

+(z)

and using

[
Λ+(z),−Λ−(z′)

]
=

∑

m∈Nodd

∑

n∈Nodd

4

mn
z−m(z′)n[λm, λ−n]

=
∑

m∈Nodd

∑

n∈Nodd

4

mn
z−m(z′)n

m

2
δm,n

=
∑

m∈Nodd

2

m




z′

z




m

= − log




z − z′

z + z′




we obtain the basic commutation relation

Γφ
+(z)Γφ

−(z′) =




z + z′

z − z′


 Γφ

−(z′)Γφ
+(z) (2.13)

3. Interlacing strict partitions

In this section, we refer the reader to [1, 2] for the definition of interlacing partitions. We

show how BKP vertex operators act on strict partitions to generate strict partitions that

interlace with the initial ones. If µ̂ and ν̂ are interlacing, and |µ̂| ≥ |ν̂|, where |µ̂| is the

sum of the lengths of the parts of µ̂, etc, we write ν̂ ≺ µ̂.

Lemma 1. If µ̂ and ν̂ are strict partitions, as in Definition 3, then

〈ν̂|Γφ
+(z)|µ̂〉 =






2n(bν|bµ)z|bν|−|bµ|, ν̂ ≺ µ̂ and n(ν̂) = n(µ̂)

(−)n(bµ)2n(bν|bµ)+ 1

2 z|bν|−|bµ|, ν̂ ≺ µ̂ and n(ν̂) = n(µ̂) − 1

0, otherwise

(3.1)

〈µ̂|Γφ
−(z)|ν̂〉 =






2n(bν|bµ)z|bµ|−|bν|, ν̂ ≺ µ̂ and n(ν̂) = n(µ̂)

(−)n(bµ)2n(bν|bµ)+ 1

2 z|bµ|−|bν|, ν̂ ≺ µ̂ and n(ν̂) = n(µ̂) − 1

0, otherwise

(3.2)

where {n(µ̂), n(ν̂)} is the number of non-zero parts in {µ̂, ν̂}, and n(ν̂|µ̂) is the number of

non-zero parts in ν̂ (the smaller partition), that are not in µ̂ (the larger partition). It is

important to notice that only n(ν̂|µ̂) appears in both of the above equations, and not n(µ̂|ν̂).

– 5 –
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Proof. Setting m2r+1 = −1, we have

Γφ
+(z)|µ̂〉 = α(−)rΓφ

+(z)
2r∏
−→
j=1

φmj
|0〉 = α(−)r

2r∏
−→
j=1


Γφ

+(z)φmj
Γφ

+(−z)

 |0〉

= α(−)r
2r∏
−→
j=1


φmj

+ 2

mj−mj+1−1∑

i=1

1

zi
φmj−i +

1

zmj−mj+1
φmj+1


 |0〉

=
∑

bν≺bµ
n(bν)=n(bµ)

2n(bν|bµ)z|bν|−|bµ||ν̂〉 + (−)n(bµ)
√

2
∑

bν≺bµ
n(bν)=n(bµ)−1

2n(bν|bµ)z|bν|−|bµ||ν̂〉

The proof of equation (3.2) goes along similar lines.

3.1 Condition 1 on BKP plane partitions

We can now see the origin of condition 1, stated above. As the vertex operators act on a

diagonal slice to form the subsequent diagonal slice, Lemma 1 says that every time a new

path starts, we pick up a factor of 2. When a path ends, there is no such contribution.

This follows from the fact that n(ν̂|µ̂) appears in both equations in Lemma 1, as mentioned

above.

4. Diagonally strict plane partitions

In this section, we show how interlacing strict partitions, stacked vertically, form diagonally

strict plane partitions with h-paths that are 2-coloured and 1-column wide.

Definition 4. Assuming that the highest column of a plane partition is at the north west

corner, as in the example in figure 1, a diagonally strict plane partition π̂ is a plane partition

whose vertical slices, along all diagonals that run from north west to south east, are strict

partitions.

4.1 Condition 2 on BKP plane partitions

The diagonal strictness condition does not allow any 4 height-h, h > 0, columns to be in

a 2 × 2 formation. Equivalently, every path is 1-column wide. Rather than give a formal,

and definitely tedious proof of this simple observation, we encourage the reader to verify

it by experimenting on a few simple examples.

4.2 Generating BKP plane partitions

Following the choice of parameters used in [6] and related papers, we consider the scalar

product

Ŝ(q) = 〈0|
∞∏

←−
j=1

Γφ
+


q

−2j+1

2




∞∏
−→
k=1

Γφ
−


q

2k−1

2


|0〉 (4.1)

=
∑

bµ

〈0|
∞∏

←−
j=1

Γφ
+


q

−2j+1

2


|µ̂〉〈µ̂|

∞∏
−→
k=1

Γφ
−


q

2k−1

2


|0〉 (4.2)

– 6 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
5

where q is an indeterminate and
∑

bµ indicates a sum over all strict partitions µ̂. From

Lemma 1, we know that Γφ
+(z)|µ̂〉 and 〈µ̂|Γφ

−(z) generate all strict partitions ν̂ ≺ µ̂. As

in [6], the arguments in the vertex operators are chosen such that the generated diagonally

strict plane partitions are weighted by their volume. In addition, the vertex operators

generate plane partitions with a multiplicity 2p(bπ), where p(π̂) is the total number of h-

paths in π̂. It follows that equation (4.2) receives a contribution of

M∏
←−
j=1

〈ν̂−j |Γφ
+


q

−2j+1

2


|ν̂−j+1〉

N∏
−→
k=1

〈ν̂k−1|Γφ
−


q

2k−1

2


|ν̂k〉 = 2p(bπ)q|bπ|

for each diagonally strict plane partition given by

π̂ = {∅ = ν̂−M ≺ . . . ≺ ν̂−1 ≺ ν̂0 Â ν̂1 . . . Â ν̂N = ∅}

where |π̂| is the volume of π̂. From that we conclude that

Ŝ(q) =
∑

bπ

2p(bπ)q|bπ|

Applying the commutation relation equation (2.13) repeatedly to equation (4.1), one re-

covers a product form for the generating function Ŝ(q) of plane partitions that satisfy the

two conditions stated above:

Ŝ(q) =
∞∏

n=1


1 + qn

1 − qn




n

(4.3)

5. Conclusion and remarks

In hindsight, equation (4.3) is what we should have expected on the basis of the com-

mutation relation of the vertex operators in equation (2.13). What is new is that equa-

tion (4.3) counts plane partitions that do not form a subset of the plane partitions counted

by MacMahon’s well-known result, re-derived in [1].

Clearly, it would be interesting to carry out a comprehensive study of plane partitions

that are generated by various classes of free fermions. These would correspond to other

integrable hierarchies, such as CKP, DKP, multicomponent hierarchies, such as n-KP, n-

BKP, etc, and restricted versions of these, including KdV, etc. This is beyond the limited

scope of this note, but we plan to report on them in further work.

An important question is whether the above result is relevant to topological string

theory. Since the result of [2] relates KP theory, which is based on A∞ to a topological

string that is dual to U(N) Chern-Simons theory, in the limit N → ∞, we naively expect

that equation (4.3) is relevant to a topological string that is dual to O(N) Chern-Simons

theory, in the limit N → ∞ [7].

– 7 –
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